Translate

Mostrando entradas con la etiqueta Alta Tensión. Mostrar todas las entradas
Mostrando entradas con la etiqueta Alta Tensión. Mostrar todas las entradas

Cálculo de fallas de cortocircuito (Método del Bus infinito o punto a punto)

 Saludos.

Espero se encuentren muy bien estimados lectores, A continuación les comparto una entrada de mi blog Tecnología Eléctrica.

-----------------------------------------------------------------------------

1.- Introducción a los cortocircuitos: (Comprensión de las corrientes de falla y la seguridad eléctrica)

Una corriente de falla es un flujo de corriente alto, involuntario e incontrolado a través de un sistema eléctrico. Las corrientes de falla se originan por cortocircuitos de muy baja impedancia. Estos pueden ser cortocircuitos a tierra o entre fases. El alto flujo de corriente resultante puede provocar sobrecalentamiento de equipos y conductores, exceso de fuerzas y, en ocasiones, incluso arcos eléctricos, explosiones y explosiones graves. La seguridad eléctrica es fundamental para prevenir y mitigar estos peligros.

Figura N° 1: Generadores aportando energía a una barra.

Tomado de: https://www.allumiax.com/blog/short-circuit-current-calculations-infinite-bus-method

Las corrientes de falla pueden deberse a diversos factores, como la caída de rayos, animales, suciedad y escombros, herramientas caídas, corrosión, degradación del aislamiento y errores humanos. El impacto de una corriente de falla puede ser grave, pudiendo dañar las infraestructuras eléctricas y poner en peligro la seguridad de sistemas eléctricos críticos.

Los cálculos de la corriente de falla se basan en la Ley de Ohm, según la cual la corriente (I) es igual al voltaje (V) dividido por la resistencia (R). La fórmula es I = V/R. Cuando hay un cortocircuito, la resistencia se vuelve muy pequeña, lo que significa que la corriente se vuelve muy grande.

Si la resistencia fuera cero, la corriente de falla calculada tendería a infinito. Sin embargo, incluso el cable de cobre tiene cierta resistencia; no es un conductor perfecto. Para determinar la corriente de falla es necesario conocer la resistencia total desde la fuente de alimentación hasta el punto de falla.

Por lo tanto, en este tipo de falla a estudiar hoy día “El cortocircuito” es esencialmente una condición anormal dentro de un sistema eléctrico en la que una gran cantidad de corriente fluye a través del circuito. “Un cortocircuito suele ocurrir como resultado de una falla en un sistema eléctrico. La falla puede ser la rotura y caída de un conductor a tierra, o el contacto entre dos o más conductores eléctricos”

Estas fallas dan lugar a la “formación de una ruta de baja resistencia para la corriente”. Esto se conoce como cortocircuito.

Impacto de la corriente de cortocircuito

Un cortocircuito se acompaña de un flujo de corriente extremadamente alto, conocido como corriente de cortocircuito.  La alta magnitud de esta corriente hace que el entorno de trabajo sea extremadamente peligroso.

El calor excesivo generado por la alta corriente provoca que los conductores se quemen o se incendien. Estas corrientes no solo dañan equipos como generadores, motores y otros aparatos eléctricos, sino que también pueden quemar los devanados del motor.

Otro efecto peligroso de los cortocircuitos son los arcos eléctricos que destruyen el equipo y pueden resultar letales para las personas y los equipos circundantes.

Clasificación o Tipos de cortocircuitos.

En las redes eléctricas, los cortocircuitos pueden clasificarse principalmente en: “trifásicos, bifásicos, monofásicos a tierra y bifásicos a tierra” Estos cortocircuitos se caracterizan por la magnitud de la corriente que generan y el tipo de contacto entre las fases y la tierra.

Figura N° 2: Tipos de cortocircuitos.

Debido a esto, es necesario realizar cálculos de cortocircuito para estar preparados ante un evento desafortunado de cortocircuito y con esto se puede tener un conocimiento adecuado de la corriente de cortocircuito que ayuda a determinar la protección de un sistema antes de que ocurra un incidente. Por ello, los cálculos de cortocircuito son obligatorios, así como realizar el mantenimiento eléctrico preventivo recomendad según la NFPA (NFPA 70B, capítulo 9) o según la norma del país donde este la instalación.

Importancia del resultado obtenido del cálculo de cortocircuito para su aplicación.

Los estudios de corto circuito son importantes para el cumplimiento de la seguridad eléctrica y selección de las protecciones, además de evitar sobrecostos.

Al calcular la corriente de falla máxima de Icc, se puede:

1.                      Determinar los niveles de energía incidente en varios puntos del sistema eléctrico.

2.                    Establecer distancias adecuadas entre los límites de arco eléctrico.

3.                    Seleccionar el equipo de protección personal (EPP) requerido para los trabajadores.

4.                    Diseñar protecciones más precisas.

5.                    Seleccionar interruptores y dispositivos de protección adecuados.

 Diferentes métodos de cálculo de fallas:

A continuación, se nombran diversos métodos de cálculos para cortocircuito en redes eléctricas.

·         Calculo e cortocircuito con ayuda de las componentes simétricas

·         Método de los MVA

·         Método de impedancias

·         Método IEEE 1584

·         Método de redes de secuencia

·         Método del bus infinito o punto a punto.

2. Método del bus infinito ("infinite bus method") o Punto a punto 

Principios fundamentales:

En el mundo de la electricidad, el cálculo preciso de las corrientes de falla es crucial para garantizar la seguridad y la confiabilidad de los sistemas eléctricos. Un método común para determinar la corriente de falla de los transformadores es el Método de la Barra Infinita. En esta clase, desarrollaremos el Método de la Barra Infinita, cómo funciona y su importancia en los estudios de arco eléctrico y el cumplimiento de la seguridad eléctrica.

Este es un método simplificado para calcular la aproximación de la corriente de falla de cortocircuito máxima ya que calcula la corriente máxima o la peor posible que entrega el transformador propagándose al sistema eléctrico en caso de cortocircuito. Obteniendo el valor máximo de Icc porque la fuente y cualquier otra impedancia se ignoran o se consideran iguales a cero, excepto la impedancia del transformador.

La impedancia del transformador juega un papel vital en el cálculo de Icc ya que limita la Icc máximo permisible que se puede transferir al lado de baja tensión del Tx´s.

En otras palabras, el Método de Barra Infinita considera el peor escenario posible, donde el transformador puede suministrar una corriente de falla ilimitada. Sin embargo, no considera la impedancia real de la fuente, que puede afectar significativamente la magnitud de la corriente de falla en sistemas reales.

Procedimiento y ecuaciones básicas:

Los transformadores trifásicos contienen datos valiosos en su placa característica, como la potencia nominal en kVA, el voltaje primario y secundario y el porcentaje de impedancia. Con estos datos mínimos, se puede calcular la corriente de cortocircuito en el peor de los casos a través de un transformador. El cálculo proporcionará la corriente de cortocircuito simétrica RMS trifásica en el bus secundario del transformador. Este proceso solo tiene tres sencillos pasos:

1.         Obtener los datos de la placa de identificación del transformador:

·         Potencia nominal en kVA

·         Voltajes primarios y secundarios

·         Porcentaje de impedancia (Z%) 

2.        Calcular los amperios de carga completa (FLA) en el lado secundario:

·         FLA secundaria = kVA / (Voltaje de línea secundaria * √3) 

3.        Calcule la corriente máxima de cortocircuito en el lado secundario utilizando la fórmula del bus infinito:

Corriente CC = (FLA * 100) / Z%

Análisis de un caso práctico real con datos de una red eléctrica.

Acá un ejemplo del cálculo usando la siguiente placa característica:

1.          Al transformador donde se va a realizar el estudio se deben anotar sus datos característicos:

·         Potencia nominal en kVA: 1250 kVA.

·         Voltajes:  primario 25000V y secundarios 416Y/240V

·         Porcentaje de impedancia (Z%= 5.6%)

Imagen N° 1 (Placa característica)


Tomado de: https://daelim-electric.com/es/transformador-de-mina-de-carbon/

Paso 2 – Calcular la corriente nominal secundaria a plena carga del transformador:

·         FLA secundaria = 1250 kVA / 0,416 kVL-L x 3)

·         FLA secundaria = 1723.35 A

Paso 3 – Calcular la corriente de cortocircuito en el bus secundario del transformador.

·         Corriente CC secundario = 1723.35 Amperios x 100 / 5.6%

·         Corriente CC secundario = 30.774.11 A

Todas las variables enumeradas anteriormente son:

·         FLA secundaria = Amperios secundarios de carga completa

·         kVL-L = Voltaje secundario en kV de línea a línea

·         kVA3phase = Transformador trifásico kVA

·         Raíz cuadrada de tres = (1,73)

·         % Z = Porcentaje de impedancia del transformador

·         Corriente de CC secundaria = Amperios de cortocircuito en el bus secundario

Desventajas del método:

·         No proporciona información detallada sobre la evolución de la tensión durante el cortocircuito.

·         Puede no ser preciso en sistemas con una alta proporción de carga no lineal o en situaciones donde la caída de tensión es significativa.

·         La corriente de cortocircuito real en un sistema de potencia puede ser menor que la calculada por este método, ya que no considera la impedancia real de la fuente de alimentación.

·         En sistemas con fuentes de alimentación más débiles, la corriente de cortocircuito puede ser significativamente menor que la calculada por este método.

·         No tiene en cuenta las fluctuaciones de voltaje y corriente durante una falla, lo que puede afectar la respuesta de los equipos de protección.

·         El método de cálculo de bus infinito generalmente NO es adecuado para su uso en estudios de arco eléctrico, ya que una corriente de cortocircuito menor podría provocar que el dispositivo de protección contra sobrecorriente tarde más en funcionar, lo que resulta en una mayor exposición a la energía durante la falla y genera una sobreestimación de los niveles de energía incidente y requisitos de EPP potencialmente excesivos.

·         El método supone una fuente de voltaje ideal con impedancia cero, lo que puede no ser siempre el caso en escenarios del mundo real.

·         No tiene en cuenta los efectos de la impedancia del cable u otros componentes del sistema que puedan limitar la corriente de falla.

·         El efecto de la corriente aportada por algún motor que esté conectado.

Comparación de Métodos de Cálculo de Corriente de Cortocircuito en Redes Eléctricas.

Tabla N°1: Comparación de métodos de cálculos. 

Método

Aplicación

Precisión

Complejidad

Simétrica

Diseño de equipos de protección.

Dimensionamiento de conductores.

Análisis de sistemas desequilibrados.

Estudios de falla.

Planificación de sistemas eléctricos.

Muy alta

Alta

MVA

Diseño de Sistemas Eléctricos de grandes redes

Análisis de Fallas

Calibración de Protección

Media-Alta

Baja

Impedancias (P.U)

Análisis de sistemas eléctricos en baja tensión

Diseño de interruptores y sistemas de protección

Análisis de la estabilidad del sistema

Pruebas de cortocircuito en transformadores

Media

Baja

Bus infinito o Punto a punto

Diseño de sistemas de protección (interruptores, fusibles, etc.)

Análisis de sistemas eléctricos (Dist. y transmisión)

Optimización de sistemas

Cumplimiento normativo

Media

Media

IEEE 1584

Calcular la energía incidente de un arco eléctrico (computarizado)

Muy alta

Alta

Redes de secuencia

Análisis de fallas trifásicas desequilibradas

Selección de dispositivos de protección

Diseño de sistemas eléctricos

Estudios de estabilidad transitoria

Alta

Alta

IEC 60909

Cálculo de la tensión equivalente

Determinación de la impedancia equivalente

Cálculo de corrientes de cortocircuito

Análisis de fallas

Selección de equipos

Muy alta

Alta

Meléndez, M (2025)

Impacto ambiental de fallas de cortocircuito.

Los cortocircuitos en las redes eléctricas pueden causar un impacto ambiental significativo debido a algunos de los equipos que la componen como es el caso del transformador que este puede liberar de sustancias contaminantes, como el aceite dieléctrico como el bifenilos policlorados (PCB), es una sustancia altamente tóxicas y dañinas para el ecosistema, representando un riesgo de contaminación de las aguas subterráneas, así como el suelo donde caigan ya que las fugas de hidrocarburos de un transformador pueden contaminar el agua de drenaje que será absorbida por la tierra.  

Imagen N° 2 Incendio de un transformador

       Tomado de: https://www.akhelec.es/son-los-transformadores-electricos-un-peligro-de-incendio/

En ese mismo orden de ideas, se puede tener la posibilidad de incendios que contaminan el aire además del suelo y el agua. Ya que el fuego, como se sabe libera humo y cenizas contaminantes a la atmósfera, contribuyendo a la contaminación del aire y afectando la salud humana.

Asimismo, el agua de lluvia que caiga sobre el transformador también se cargará con hidrocarburos y correrá el riesgo de contaminar gravemente el suelo.

Además, el sobrecalentamiento y las fallas pueden aumentar el consumo de energía y contribuir a las emisiones de gases de efecto invernadero.

Preguntas abiertas:

🎯 ¿Cuándo se debe utilizar el método de bus infinito para el cálculo de la corriente de falla del transformador?

🎯 ¿Se puede utilizar el método de bus infinito para todos los tipos de transformadores?

🎯 ¿Cómo se compara el método de bus infinito con otros métodos de cálculo de corriente de falla?

🎯 ¿Existe una forma sencilla de calcular corrientes de cortocircuito sin un programa informático?

🎯 ¿Cómo funciona el Método del Bus Infinito?

🎯 ¿Por qué es importante manejar el método de cálculo Bus infinito?

 Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma, consúltalos y sigue mi blog.

Además, si eres un lector habitual de este blog y te gusta su contenido quizás puedas contribuir para su mantenimiento. Cualquier cantidad por pequeña que sea será bien recibida.

    Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Paginas consultadas:

https://www.allumiax.com/blog/short-circuit-current-calculations-infinite-bus-method

https://www.70econsultants.com/understanding-infinite-bus-method-transformer-fault-current-calculation/

https://brainfiller.com/es/technical-articles/short-circuit-calculations-infinite-bus-method/

https://electricaplicada.com/calculo-de-cortocircuito-metodo-basico/#ejemplo

https://es.scribd.com/presentation/732558107/Metodo-Bus-Infinito-y-MVA

https://www.youtube.com/watch?v=yAnLSMHIRlI

https://www.youtube.com/watch?v=N7CMKLrbctI#:~:text=This%20content%20isn't%20available,de%20%23alta%20~%23tensi%C3%B3n.

https://proincr.com/impacto-ambiental-transformadores/#:~:text=2.,a%20las%20emisiones%20de%20carbono.

https://www.akhelec.es/anticipese-y-gestione-los-riesgos-asociados-los-transformadores-electricos-utilizando-un-cubeto-de-retencion-de-transformadores/#:~:text=Las%20fugas%20de%20hidrocarburos%20de,de%20contaminar%20gravemente%20el%20suelo



Parámetros eléctricos en las líneas de transmisión. (Resistividad)

 Parámetros eléctricos en las líneas de transmisión.

El estudio de los parámetros eléctricos de las líneas de transmisión es de gran importancia para las diversas áreas de los sistemas eléctricos de potencia (SEP), ya que conocerlos resulta crucial para el diseño, operación y mantenimiento de los mismos. Permitiendo predecir el comportamiento de la línea, así como calcular pérdidas que puedan existir en la misma, optimizar el rendimiento, diagnosticar las fallas que se puedan presentar y asegurar los sistemas y las personas que trabajan con él.

Es por ello que tenemos que saber que las líneas de trasmisión se denominan son aquellas que operan a tensiones más elevadas del sistema y son las que transportan la energía eléctrica entre las áreas de consumo y las centrales del país, por ende, es donde se necesita tener una mayor confiabilidad y calidad con el servicio eléctrico.

Una línea de transmisión de energía eléctrica posee cuatro parámetros que influyen en su comportamiento como componente de un sistema de potencia, Estos son:

·         Resistencia en serie por unidad de longitud, R, expresada en Ω/m.

·         Inductancia en serie por unidad de longitud en H/m.

·         Capacidad en paralelo por unidad de longitud, C, en F/m.

·         Conductancia en paralelo por unidad de longitud, G, en S/m.

Figura N°1: Representación gráfica de los parámetros eléctricos en las líneas de trasmisión.

Fuente: Meléndez (2025)

Los parámetros longitudinales son la resistencia y la inductancia, que varían en relación a la a frecuencia [1], mientras que los parámetros transversales son las conductancias y las capacitancias conociendo que, para el caso de los conductores aéreos, estas son despreciadas si la longitud de estas es menor a 80Km [2]

Parámetro resistivo longitudinal en las líneas de transmisión.

Cuando se habla del efecto resistivo en las líneas de transmisión este se refiere a la pérdida de potencia eléctrica debido a la resistencia propia de los conductores que componen la línea. Esta resistencia, es causada por la oposición del material a la corriente eléctrica y provoca una caída de tensión creando pérdidas de energía en forma de calor.

 Es por ello que la resistencia eléctrica del material conductor en el caso de los medios de transmisión los conductores son proyectados para tener la resistividad más baja posible y disminuir el efecto Joule.

Para los conductores operando en corriente continua (DC) esta circula por toda la sección del mismo, como se puede ver en la figura 2 (a), y teniendo como fórmula de resistencia del conductor la siguiente:

Formula 1: Resistividad del material conductor.

Figura de la formula tomada de: https://www.tuveras.com/lineas/parametros/parametros.htm

                En el caso de señales en corriente alterna (AC) ver en la figura 2 (b) la corriente no se distribuye igualmente por toda el área transversal del conductor, esta corriente se concentra próximo a la superficie externa del conductor a medida que la frecuencia aumenta. Provocando esto que, en altas frecuencias, la resistencia aumenta con la frecuencia debido al efecto pelicular, Kelvin o piel (skin).

Figura N°2: Efecto Skin, Kelvin o Piel.

Figura tomada de: https://cceea.mx/blog/ciencia/efecto-skin

Como se puede apreciar en la figura anterior, por este efecto es que el conductor a utilizar en corriente alterna es que uno de los factores que se consideran para fabricar los conductores son tipo cables, es decir compuestos por varios hilos para aprovechar mejor las superficies de cada hilo del cable. De esta forma se consigue un aumento de la zona de conducción efectiva en (AC).

Además, la profundidad de penetración del efecto piel (o profundidad de la piel) en las líneas de transmisión es la distancia a partir de la superficie del conductor donde la densidad de corriente se reduce aproximadamente el 37 % del valor de la densidad de corriente en la superficie. En otras palabras, es la distancia a la que la corriente alterna se concentra principalmente en la superficie del conductor debido al efecto piel.

Cabe destacar, que la resistencia óhmica en los conductores trenzados es mayor que el valor que se calcula mediante la fórmula previamente mencionada (N° 1), porque la colocación en espiral de los hilos los hace más largos que el conductor mismo. Para cada kilómetro de conductor, El incremento en la resistencia debido al trenzado se estima de 1 % para conductores de tres hilos y de 2 % para conductores concéntricamente trenzados.

Corrección por temperatura de la resistencia a la corriente directa

En esa misma línea sobre los factores que influyen en el incremento del valor resistivo del conductor es necesario hacer esta corrección dado que cuando la temperatura de un conductor aumenta, la resistencia también aumenta de forma significativa, tal y como se muestra en la gráfica en donde se comparan justamente éstos dos parámetros, la resistencia y la temperatura.

Figura N°3: Resistencia vs temperatura.


Fuente: Condumex. Manual técnico de cables de energía, capítulo 5. 

Formula 2: Resistividad del material conductor.


Donde:

R2 = Resistencia del cable a la temperatura T2 para θ2 en (Ω)

R1 = Resistencia del cable a la temperatura T1 para θ1 (20º C) en (Ω)

θ2 = Temperatura para la cual se desea conocer la R2

α1= Coeficiente térmico de resistividad eléctrica a 20º C 

Resistencia Efectiva o Resistencia (AC):

Si   la   corriente   que   fluye   por   un   medio   conductor   es alterna, se presenta una resistencia en AC o efectiva. La resistencia efectiva se determina normalmente en forma experimental o bien a partir de la resistencia óhmica. De forma experimental tenemos que:

Formula 3: Resistencia efectiva.


Y partiendo de la resistencia óhmica, que es el método más utilizado podemos calcular la resistencia   efectiva mediante el efecto piel o skin sabiendo que es el 2% más de la Rdc, entonces:

·         Rac = Rdc * 102 %

·         Rac = Rdc * 1.02

Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma, consúltalos y sigue mi blog.

Si tienes alguna duda contáctenos vía Correo electrónico.

Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Referencias:

[1] KUROKAWA, S.; YAMANAKA, F. N. R; PRADO, A. J.; BOVOLATO, L. F.; PISSOLATO, J. (2007). Representación de líneas de transmisión por medio de variables de estado tomando en consideración el efecto de la frecuencia sobre los parámetros longitudinales. SBA. Sociedad Brasileira de Automática, Lugar de Publicación, v.18, n.3, p.337-346.

[2] MARTINEZ, J. A. B.; GUSTAVSEN, D. D. Parameters determination for modeling system transients – part I: overhead lines. IEEE Transactions on Power Delivery, IEEE Power & Energy Society, v.20, n.3, p.2038-2044, 2005.

·         Samuel Ramírez Cataño, Redes de Distribución de Energía, Parte 1, Universidad Nacional de Colombia.

Consultas por internet:

https://wiki.sj.ifsc.edu.br/index.php/Par%C3%A2metros_prim%C3%A1rios_da_linha_de_transmiss%C3%A3o

Cálculo de fallas de cortocircuito (Método del Bus infinito o punto a punto)

  Saludos. Espero se encuentren muy bien estimados lectores, A continuación les comparto una entrada de mi blog Tecnología Eléctrica. --...