Translate

Mostrando entradas con la etiqueta Conductor Eléctrico. Mostrar todas las entradas
Mostrando entradas con la etiqueta Conductor Eléctrico. Mostrar todas las entradas

Parámetros eléctricos en las líneas de transmisión. (Resistividad)

 Parámetros eléctricos en las líneas de transmisión.

El estudio de los parámetros eléctricos de las líneas de transmisión es de gran importancia para las diversas áreas de los sistemas eléctricos de potencia (SEP), ya que conocerlos resulta crucial para el diseño, operación y mantenimiento de los mismos. Permitiendo predecir el comportamiento de la línea, así como calcular pérdidas que puedan existir en la misma, optimizar el rendimiento, diagnosticar las fallas que se puedan presentar y asegurar los sistemas y las personas que trabajan con él.

Es por ello que tenemos que saber que las líneas de trasmisión se denominan son aquellas que operan a tensiones más elevadas del sistema y son las que transportan la energía eléctrica entre las áreas de consumo y las centrales del país, por ende, es donde se necesita tener una mayor confiabilidad y calidad con el servicio eléctrico.

Una línea de transmisión de energía eléctrica posee cuatro parámetros que influyen en su comportamiento como componente de un sistema de potencia, Estos son:

·         Resistencia en serie por unidad de longitud, R, expresada en Ω/m.

·         Inductancia en serie por unidad de longitud en H/m.

·         Capacidad en paralelo por unidad de longitud, C, en F/m.

·         Conductancia en paralelo por unidad de longitud, G, en S/m.

Figura N°1: Representación gráfica de los parámetros eléctricos en las líneas de trasmisión.

Fuente: Meléndez (2025)

Los parámetros longitudinales son la resistencia y la inductancia, que varían en relación a la a frecuencia [1], mientras que los parámetros transversales son las conductancias y las capacitancias conociendo que, para el caso de los conductores aéreos, estas son despreciadas si la longitud de estas es menor a 80Km [2]

Parámetro resistivo longitudinal en las líneas de transmisión.

Cuando se habla del efecto resistivo en las líneas de transmisión este se refiere a la pérdida de potencia eléctrica debido a la resistencia propia de los conductores que componen la línea. Esta resistencia, es causada por la oposición del material a la corriente eléctrica y provoca una caída de tensión creando pérdidas de energía en forma de calor.

 Es por ello que la resistencia eléctrica del material conductor en el caso de los medios de transmisión los conductores son proyectados para tener la resistividad más baja posible y disminuir el efecto Joule.

Para los conductores operando en corriente continua (DC) esta circula por toda la sección del mismo, como se puede ver en la figura 2 (a), y teniendo como fórmula de resistencia del conductor la siguiente:

Formula 1: Resistividad del material conductor.

Figura de la formula tomada de: https://www.tuveras.com/lineas/parametros/parametros.htm

                En el caso de señales en corriente alterna (AC) ver en la figura 2 (b) la corriente no se distribuye igualmente por toda el área transversal del conductor, esta corriente se concentra próximo a la superficie externa del conductor a medida que la frecuencia aumenta. Provocando esto que, en altas frecuencias, la resistencia aumenta con la frecuencia debido al efecto pelicular, Kelvin o piel (skin).

Figura N°2: Efecto Skin, Kelvin o Piel.

Figura tomada de: https://cceea.mx/blog/ciencia/efecto-skin

Como se puede apreciar en la figura anterior, por este efecto es que el conductor a utilizar en corriente alterna es que uno de los factores que se consideran para fabricar los conductores son tipo cables, es decir compuestos por varios hilos para aprovechar mejor las superficies de cada hilo del cable. De esta forma se consigue un aumento de la zona de conducción efectiva en (AC).

Además, la profundidad de penetración del efecto piel (o profundidad de la piel) en las líneas de transmisión es la distancia a partir de la superficie del conductor donde la densidad de corriente se reduce aproximadamente el 37 % del valor de la densidad de corriente en la superficie. En otras palabras, es la distancia a la que la corriente alterna se concentra principalmente en la superficie del conductor debido al efecto piel.

Cabe destacar, que la resistencia óhmica en los conductores trenzados es mayor que el valor que se calcula mediante la fórmula previamente mencionada (N° 1), porque la colocación en espiral de los hilos los hace más largos que el conductor mismo. Para cada kilómetro de conductor, El incremento en la resistencia debido al trenzado se estima de 1 % para conductores de tres hilos y de 2 % para conductores concéntricamente trenzados.

Corrección por temperatura de la resistencia a la corriente directa

En esa misma línea sobre los factores que influyen en el incremento del valor resistivo del conductor es necesario hacer esta corrección dado que cuando la temperatura de un conductor aumenta, la resistencia también aumenta de forma significativa, tal y como se muestra en la gráfica en donde se comparan justamente éstos dos parámetros, la resistencia y la temperatura.

Figura N°3: Resistencia vs temperatura.


Fuente: Condumex. Manual técnico de cables de energía, capítulo 5. 

Formula 2: Resistividad del material conductor.


Donde:

R2 = Resistencia del cable a la temperatura T2 para θ2 en (Ω)

R1 = Resistencia del cable a la temperatura T1 para θ1 (20º C) en (Ω)

θ2 = Temperatura para la cual se desea conocer la R2

α1= Coeficiente térmico de resistividad eléctrica a 20º C 

Resistencia Efectiva o Resistencia (AC):

Si   la   corriente   que   fluye   por   un   medio   conductor   es alterna, se presenta una resistencia en AC o efectiva. La resistencia efectiva se determina normalmente en forma experimental o bien a partir de la resistencia óhmica. De forma experimental tenemos que:

Formula 3: Resistencia efectiva.


Y partiendo de la resistencia óhmica, que es el método más utilizado podemos calcular la resistencia   efectiva mediante el efecto piel o skin sabiendo que es el 2% más de la Rdc, entonces:

·         Rac = Rdc * 102 %

·         Rac = Rdc * 1.02

Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma, consúltalos y sigue mi blog.

Si tienes alguna duda contáctenos vía Correo electrónico.

Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Referencias:

[1] KUROKAWA, S.; YAMANAKA, F. N. R; PRADO, A. J.; BOVOLATO, L. F.; PISSOLATO, J. (2007). Representación de líneas de transmisión por medio de variables de estado tomando en consideración el efecto de la frecuencia sobre los parámetros longitudinales. SBA. Sociedad Brasileira de Automática, Lugar de Publicación, v.18, n.3, p.337-346.

[2] MARTINEZ, J. A. B.; GUSTAVSEN, D. D. Parameters determination for modeling system transients – part I: overhead lines. IEEE Transactions on Power Delivery, IEEE Power & Energy Society, v.20, n.3, p.2038-2044, 2005.

·         Samuel Ramírez Cataño, Redes de Distribución de Energía, Parte 1, Universidad Nacional de Colombia.

Consultas por internet:

https://wiki.sj.ifsc.edu.br/index.php/Par%C3%A2metros_prim%C3%A1rios_da_linha_de_transmiss%C3%A3o

Análisis de Sistemas Eléctricos de Potencia (SEP) "Líneas Cortas"

Generalidades.

El SEP es el conjunto de todas las instalaciones y equipamientos destinados a la generación, transmisión y distribución de energía eléctrica. Iniciando con una línea de transmisión que conecta la central eléctrica con una carga industrial o de iluminación de una ciudad, teniéndose un proyecto específico de línea de transmisión: cable, tensión y frecuencia en función de la potencia de generación y de la distancia de la carga entre estas, buscándose optimizar el proyecto considerando la tensión, la longitud y las pérdidas de la línea, de forma a ter el mínimo costo en el período de vida útil de la línea.

                Especificando sobre el punto a desarrollar en esta entrada nos centraremos en la configuración de las líneas ya que cada una de ellas está asociada a un modelo de circuito y parámetros concentrados, o sea, se tiene un modelo para línea corta, otro para línea media y otro para línea larga.

Líneas de Transmisión.

Un sistema de líneas de transmisión eléctrica consiste en un sistema de conductores que transporta la energía eléctrica desde una central generadora hasta las estaciones de distribución para usos residenciales e industriales. La configuración de transmisión subterránea es ecológica, pero mucho más costosa que la aérea. Por ello, las líneas eléctricas aéreas se utilizan con mayor frecuencia para la transmisión de energía eléctrica en todo el mundo [1–5].

 Estas líneas eléctricas, que a veces atraviesan entornos hostiles (desiertos cálidos, cordilleras, bosques densos y masas de agua), se instalan en torres fijas verticalmente mediante aisladores, espaciadores y amortiguadores, entre otros [6–8].

Para una transmisión eficiente y confiable de energía eléctrica de alto voltaje, las líneas de transmisión requieren inspecciones rutinarias para la detección temprana de fallas y el mantenimiento. La detección y localización de fallas en los equipos de transmisión es crucial, ya que ayuda a las compañías de transmisión a minimizar los costos de mantenimiento y previene cortes de energía no deseados [9,10].

                Línea Corta: En este tipo de clasificación la capacitancia en las líneas cortas es muy pequeña (efecto corona y efecto aislador), y normalmente puede ser despreciada sin perder su precisión de cálculos. Así, solo se consideran los parámetros longitudinales que son: La resistencia en serie “R” y la inductancia en serie “L” para toda la longitud de la línea, conforme se ilustra en la Fig. 1. La distancia máxima para considerar que una línea es corta según los escritos investigados ronda entre las 50 millas estas equivalentes a 80 Km, En estos casos se puede transmitir hasta 1,5 veces la potencia nominal. Además, todo esto con la finalidad de simplificar el análisis de líneas cortas.

 Figura N° 1: Representación de una Línea corta:

Figura tomada de: http://mdsedpotencia.blogspot.com/2016/

La capacidad de carga de las líneas de transmisión cortas, (para líneas aéreas de 60 Hz) suele determinarse por el límite térmico del conductor o por las capacidades nominales del equipo en los terminales de la línea, por ejemplo, los interruptores. Y su rendimiento dependerá de los efectos de la resistencia y la inductancia que la conforma. Como no hay capacitancia, durante la condición sin carga, la corriente a través de la línea se considera cero, por lo tanto, en la condición sin carga, la tensión final de recepción es la misma que la tensión final de envío.

Figura N° 2: Diagrama Fasorial de una Línea corta:



Figura tomada de: https://www.google.com/url?sa=i&url=https%3A%2F%2Fevirtual401.insteclrg.edu.ec%2Fmod%2Fforum%2Fdiscuss.php%3Fd%3D274&psig=AOvVaw2XKkP5sMaO0KAP1p4dmcrm&ust=1746532981647000&source=images&cd=vfe&opi=89978449&ved=2ahUKEwiVkfnApIyNAxWscjABHSJFMq4QtaYDegQIABA2

 

El análisis de líneas cortas es el proceso simplificado que debemos realizar para comprender el comportamiento de las líneas de transmisión cortas, permitiendo evaluar su capacidad de carga, caída de tensión y estabilidad del sistema. Entre otras. Para comprender un poco más realizaremos un ejercicio.

 Ejercicio Líneas Cortas:

A partir del uso de tablas de conductores de líneas de trasmisión y los cálculos necesarios, se necesita conocer: el voltaje de salida del generador (Vg), la corriente de salida del generador (Ig), la potencia aparente que entrega el generador (Sg) y la regulación de tensión de la línea si esta tiene una longitud de 75Km de largo a 50°C con conductor tipo Hawk trabajando a una frecuencia de 60Hz, un espaciamiento entre ellos de 20 pies, la carga es de 20MW el F.P. es de 0.9 (-) y una tensión en la carga de 50KV en estrella, considerando el sistema trifásico equilibrado.

Solución:

1.- Determinar la longitud en millas, ya que la tabla de conductores generalmente se consigue para ese tipo de unidad.

Calculo de longitud.




2.- Cálculos de los valores resistivos y reactivos de la línea.

Se debe ubicar la tabla 1 de características eléctricas para conductores de aluminio reforzados con acero ACSR de líneas de transmisión y extraer los valores del tipo conductor del ejercicio. En este caso es el tipo Hawk:

Tabla N°1: Características eléctricas de los conductores de aluminio reforzados de acero (ACSR)

Como en el enunciado del ejercicio indica que los conductores tienen una separación de 20 pies además se debe buscar la tabla 2 y extraer el valor para dicha condición.

Tabla N°2: Valores de espaciamiento según separación en pies para conductores de aluminio reforzados de acero (ACSR) a 60 Hz.


Tomadas de: https://es.scribd.com/document/435829791/tabla-de-conductores

Tomadas de: https://es.scribd.com/document/435829791/tabla-de-conductores

Con dichos valores:

R: 0.212 Ω/milla y XL: (0,43 Ω + 0.3635 Ω)

Entonces:

Se determinan los valores para la longitud de la line del ejercicio para este caso 75 Km

R = 46.61 millas x 0.2120 Ω = 9.88 Ω

XL = 46.61 millas x (0.43 Ω+0.3635 Ω) = 36.99 Ω

.˙.  =› Z= 9.88+J36.99 Ω llevando a polar:  38.3 ے75°

Como se puede ver en la figura al despreciar el efecto capacitivo el circuito queda en serie, por lo tanto, las corrientes del generador, la línea y la carga son iguales. Es decir: Ig = IL e = Ic

3.- Calculo de corriente.

Así obtenemos el módulo de la corriente y el ángulo lo tenemos del factor de potencia. F.P. 0.9 (-) en atraso, quedaría expresada la corriente de la siguiente manera:

IC= 256.6 ے-25.84° A

4.- Determinar los voltajes:

                a) Voltaje de fase 1:

Así obtenemos el módulo del voltaje y su ángulo lo tenemos al ubicarlo en el eje de referencia 0°, quedaría expresada la tensión de la siguiente manera:

VCF1= 28867.5 ے0° V

b) Voltaje en la línea:

VL= (256.6 ے-25.84° A * 38.3 ے75° Ω) = 9827.78 ے49.16° V

 

c) Voltaje en el generador:

Vg = Vc + VL = 28867.5 ے0° V + 9827.78 ے49.16° V

Como se sabe este tipo de expresión matemática se debe llevar a números rectangulares para poder sumar y luego convertir nuevamente a polar. A realizar esos pasos quedaría así: 

.˙.  =› VG = 64.47 ے11.9° KV

5.- Determinar la potencia aparente que entrega el generador.

S = 1.73 x VG x Ig = 1.73 x 62470 V x 256,6 A = 27.8 MVA

6.- Determinar la regulación de tensión en la línea. 

Al tener estos resultados podemos conocer la situación hipotética para este ejemplo en específico sobre la regulación de tensión ya que este se calcula para saber si la tensión eléctrica se encuentra dentro de límites aceptables a lo largo de la línea, desde el extremo de envío hasta el extremo receptor. Esto es crucial para asegurar el correcto funcionamiento de los equipos y sistemas eléctricos. Con este resultado se puede decir que ese valor está muy por encima del permitido en normas, ya que el rango debe estar entre el 5 y el 10% según el país.

Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma, consúltalos y sigue mi blog.

Si tienes alguna duda contáctenos vía Correo electrónico.

Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Referencias:         

[1] VN Nguyen y otros. Inspección automática de líneas eléctricas basada en visión autónoma: una revisión del estado actual y el papel potencial del aprendizaje profundo, Int J Electr Power Sistema de Energía (2018)

[2] Z. Li y otros. Robot de inspección autónomo para el mantenimiento de líneas de transmisión eléctrica mientras opera en los cables de tierra aéreos. Sistema robótico avanzado Int J (2010)

[3] L. Matikainen y otros. Métodos de teledetección para estudios de corredores de líneas eléctricas Sensor remoto de fotogramas ISPRS J (2016)

[4] C. Martínez et al. El software de inspección de líneas eléctricas (PoLIS): un sistema versátil para automatizar la inspección de líneas eléctricas, Ing. Appl. Artif. Intell. (2018)

[5] L. Wang y otros.Una encuesta sobre robots de inspección de aisladores para líneas de transmisión eléctrica,

[6] C. Zhou y otros. Modelado y mecanismo de la vibración inducida por lluvia y viento en haces de conductores, Vibración de choque. (2016)

[7] A. Pagnano y otros. Guía para la inspección automatizada de líneas eléctricas. Mantenimiento y reparación. Procedia CIRP, (2013)

[8] H. Wang y otros. Investigación de robots de mantenimiento de líneas de transmisión eléctrica en SIACAS.

[9] X. Yue y otros. Optimización del rendimiento de un robot de inspección móvil para líneas de transmisión eléctrica. Int J Simulat Syst Ciencia y Tecnología. (2016)

[10]Jidai Wang y otros. Desarrollo de una estrategia de control experto para controlar el cruce de obstáculos de un robot de inspección de líneas de transmisión de alto voltaje.

Ramón M. Mujal Rosas. Cálculo de líneas y redes eléctricas. EDICIONS UPC. (2002)

https://repositorio.utp.edu.co/server/api/core/bitstreams/3322aa79-89f4-4db7-9849-f194995228c3/content#:~:text=Para%20las%20l%C3%ADneas%20de%20transmisi%C3%B3n,mantenerse%20en%20sincronismo%20%5B14%5D.&text=Es%20un%20evento%20causado%20por,por%20causas%20imprevistas%20o%20programadas

Inducción electromagnética: La transición del solenoide al motor eléctrico.

     A modo de introducción.

En la actualidad, la tecnología es tan avanzada que parece casi imposible superarla. Sin embargo, no siempre fue así, todos estos avances tienen un génesis y para este caso no es otro que el estudio y experimentos con la inducción electromagnética la cual es el fenómeno que se produce en un conductor cuando se induce una corriente eléctrica estando inmerso en una región de flujo de campo magnético oscilante.

Esto lo pudo descubrir por el año 1820, Hans Christian Oersted planteando que existe una relación entre los fenómenos eléctricos y magnéticos. Accidentalmente, Oersted observó que cuando pasa corriente eléctrica por el hilo conductor puede alterar la dirección de alineamiento de algunas brújulas que habían sido dejadas en las proximidades del hilo conductor.

Figura N° 1 Brújulas alrededor de un hilo conductor.

Tomado de:  https://brasilescola.uol.com.br/fisica/a-inducao-eletromagnetica.htm

El experimento de Oersted nos permitió comprender que la electricidad y el magnetismo, hasta entonces “independientes” uno del otro, ya que son fenómenos de la misma naturaleza y fue a partir de ese descubrimiento que se iniciaran los estudios sobre el electromagnetismo.

Con estos estudios los solenoides se insertan en el ámbito de los campos magnéticos producidos por corrientes eléctricas, tema que es una extensión natural del estudio de los campos magnéticos producidos por imanes. Después de comprender los principios básicos de la Ley de Ampere y la Ley de Biot-Savart (Es una de las principales leyes del magnetismo, siendo una extensión de la Ley de Coulomb para las cargas en movimiento. Esta ley permite calcular el campo magnético generado por una corriente eléctrica),

El estudio de los solenoides nos proporciona un medio eficiente de manipular y direccionar los campos magnéticos. Esto es particularmente importante ya que estos son una fuerza clave en la Física, estos campos interactuando con partículas cargadas y generando movimiento. De esa forma, el estudio de los solenoides es una parte esencial para nuestro entendimiento del electromagnetismo y sus múltiples aplicaciones.

Figura N° 2 Experimento para la construcción de un electroimán.

Tomado de: https://www.periodicodeibiza.es/noticias/sociedad/2024/10/04/2253891/industria-del-solenoide-tecnologia-moderna-esta-revolucionando-2024.html

El Solenoide

Ahora para especificar traemos a colación la definición de solenoide según Halliday, Resnick, y Walker (2009), Estos “Son conductores enrollados que forman tubos estructurados de espiras distribuidas uniformemente espaciadas, las cuales, cuando se aplica una corriente eléctrica, se nota la generación de un campo magnético, entonces toda vez que ocurre una variación en la corriente eléctrica, ocurre un surgimiento de un campo magnético” En pocas palabras el solenoide es una bobina de alambre que cuando por ella pasa corriente, esta se convierte en un electroimán que atrae o repele un núcleo móvil dentro de él.

Y tal como lo describe Tipler & Mosca (2009), “El solenoide muchas veces denominado como una bobina de hilo en formato espiral en torno de un pistón, normalmente de hierro, logrando un electroimán. Las líneas de campo de un electroimán entran en una extremidad y salen por la otra, en tanto que en el imán, ellas entran por un polo (polo sur) y salen en el otro (polo norte)". Por representar el comportamiento semejante al de un imán.

Los solenoides se utilizaron inicialmente en aplicaciones simples como timbres eléctricos, interruptores y válvulas. En la actualidad estos se clasifican como dispositivos electromecánicos utilizados para obtención de fuerza mecánica a partir de energía eléctrica. El sistema de funcionamiento de un solenoide, cuyas principales aplicaciones son para el accionamiento de interruptores, ignición de un automóvil, válvula en el sistema de aspersores, transistores, unidades de irrigación y martillos de aire, así como también en la industria automotriz que con la aparición de los vehículos eléctricos, los solenoides se han convertido en una parte esencial del diseño de estos vehículos.

Sin embargo, la industria del solenoide se destaca también en la robótica que hace algunos años, los robots no eran capaces de realizar tareas como realizar cirugías o moverse por los almacenes. Y la medicina no es la excepción, estos aparatos regulan el flujo de aire en respiradores y otros dispositivos médicos.

La inducción electromagnética

De acuerdo con los avances de los estudios posteriores a Oersted, se entendió que las corrientes eléctricas eran capaces de generar campos magnéticos, La reciprocidad fue observada en 1831, cuando Michael Faraday descubrió que una corriente eléctrica era capaz de producir un campo magnético. Por tanto, Faraday realizó diversos experimentos, con su aparato experimental que consistía de un anillo de hierro con dos enrollados (bobinas) de hilos de cobre, conectados a una batería y a un galvanómetro (dispositivo usado para medir corriente).

Figura N° 3 Circuito experimental de Faraday


El experimento de Faraday mostró que un campo magnético oscilante puede producir corriente eléctrica.

Faraday percibió que, cuando la batería era conectada o desconectada, se veía el movimiento de la aguja del galvanómetro, indicando este una circulación de corriente sin embargo, esa corriente cesaba y solo se veía nuevamente cuando la batería era conectada o desconectada. Faraday realizo diferentes experimentos, en uno de ellos descubrió que, cuando se movía un imán en dirección a una bobina conductora (también conocida como solenoide), una corriente eléctrica la recorría. Él había descubierto el principio de la inducción electromagnética.

Michael Faraday había descubierto que el movimiento relativo entre un imán y una bobina era capaz de producir una corriente eléctrica, actualmente ese fenómeno es utilizado en el mundo entero, para la producción de energía eléctrica en centrales hidroeléctricas, termoeléctricas, nucleares, eólicas etc.

Inducción electromagnética y la ley de Faraday

De acuerdo con la ley de Faraday, cuando hay variación de flujo de campo magnético en algún circuito conductor, como en una bobina, una fuerza electromotriz inducida (tensión eléctrica) surge en ese conductor. 

El flujo magnético, a su vez, se refiere al número de líneas de campo magnético que cruzan un área. Esta magnitud física, medida en Wb (Weber o T/m²), relaciona la intensidad del campo magnético con el área y el ángulo entre las líneas del campo magnético y la recta normal del área.

Formula 1: Flujo magnético

Donde:

Φ – flujo magnético (Wb o T/m²)

B – campo magnético (T – Tesla)

A – área (m²)

Cos θ – ángulo entre B y superficie de A

A pesar de que la inducción electromagnética fue descubierta por Faraday, él no la dedujo matemáticamente, ni pudo explicar la forma de como la fuerza electromotriz surgía en el circuito, esas implementaciones surgirían después, por los estudios de Heinrich Lenz en 1834 y los de Franz Ernst Neumann entre el año 1845 y 1847, que publicó trabajos que establecieron las leyes matemáticas de la inducción de corrientes eléctricas, moldeando la ley de Faraday en la forma como la conocemos actualmente.

La contribución de Neumann se refiere a la ecuación de la ley de Faraday, que la describió como una variación temporal del flujo del campo magnético, comprobando:

Formula 2: Descripción matemática de la ley de Faraday

ε – fuerza electromotriz inducida (V – Volts)

ΔΦ – variación de flujo magnético (Wb)

Δt – intervalo de tempo

La contribución de Lenz, a su vez, estuvo relacionada con el principio de conservación de la energía. Lenz explicó cuál debería ser la dirección de la corriente eléctrica inducida por la variación del flujo magnético. Según él, la corriente eléctrica inducida siempre surge de tal manera que se opone a la variación del flujo magnético externo. La observación de Lenz nos llevó a añadir el signo negativo a la ley de Faraday.

Las figuras siguientes muestran como ocurre el surgimiento de la fuerza electromotriz inducida de acuerdo con la ley de Faraday-Lenz, y observe que las líneas del campo magnético inducido parecen compensar la variación en el flujo del campo magnético que aumenta hacia el interior del solenoide:

Figura N°4 Experimento inducción electromagnética (A)

Al aproximar el norte magnético de la bobina, ella produce un norte magnético que se opone.

Figura N°4 Experimento inducción electromagnética (B)

Al alejar el norte magnético hace que la bobina produzca un sur magnético.

Aplicaciones de la inducción electromagnética

A medida que la comprensión del electromagnetismo avanzaba, los científicos e ingenieros comenzaron a explorar formas de aplicaciones directas para la inducción electromagnética donde se aprovecha el principio básico del motor eléctrico que se basa en la interacción entre un campo magnético y una corriente eléctrica, lo que produce una fuerza de rotación logrando la conversión de energía eléctrica en energía mecánica.

Los motores eléctricos se convirtieron en componentes fundamentales en una amplia gama de aplicaciones, desde máquinas industriales hasta electrodomésticos y transporte. La capacidad de estos en convertir la energía eléctrica en movimiento mecánico de manera eficiente y controlable los hizo indispensables en la revolución industrial y el desarrollo tecnológico moderno.

    Hoy día, los motores eléctricos se encuentran en prácticamente todos los aspectos de nuestra vida cotidiana y son esenciales para el funcionamiento de la sociedad.

En resumen, la transición de la tecnología eléctrica aplicada al solenoide hasta llegar al motor eléctrico, sin olvidar el transformador eléctrico, ni el generador. Son un hito crucial que permitió aprovechar de manera más eficiente y versátil la energía eléctrica con la intención de lograr generar movimiento para la transformación de la vida cotidiana gracias a la potencia mecánica que obtenemos de ellos, buscando siempre la mejoras en el diseño, los materiales y la eficiencia de las maquinas eléctricas que se volvieron cada vez más potentes, confiables y versátiles.

Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma, consúltalos y sigue mi blog.

Si tienes alguna duda contáctenos vía Correo electrónico.

Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Referencias: 

    HALLIDAY, D; RESNICK, R; WALKER, J. Fundamentos de la Física 3: Electromagnetismo. 8. ed. Rio de Janeiro: LTC – Libros Técnicos y Científicos, 2009.

    TIPLER & MOSCA. Física para científicos e Ingenieros. Volumen 2, Editora LTC, 6 edición, 2009.

  https://semanaacademica.org.br/system/files/artigos/construcao_civil-_conversao_de_energia_eletrica_em_mecanica.pdf


Los circuitos eléctricos en las Ingenierías: Un Enlace entre la electricidad y otras ingenierías…

Caso Ingeniería Biomédica. Introducción En la actualidad sin un circuito eléctrico en buen funcionamiento, no seria posible tener electr...