Translate

Mostrando entradas con la etiqueta Redes de distribución. Mostrar todas las entradas
Mostrando entradas con la etiqueta Redes de distribución. Mostrar todas las entradas

Fundamentos de los Sistemas Trifásicos.

  Saludos.

Espero se encuentren muy bien estimados lectores, A continuación les comparto el más reciente escrito en Tecnología Eléctrica, un post que trata sobre: Fundamentos de los Sistemas Trifásicos.

Si eres un lector habitual de este blog y te gusta su contenido quizás quieras y puedas contribuir para su mantenimiento. Cualquier cantidad por pequeña que sea será bien recibida.  No olvides marcar el botón (SEGUIR) en el Blog Gracias…

-----------------------------------------------------------------------------

Fundamentos de los Sistemas Trifásicos.

Los sistemas trifásicos son un  sistema operativo y desempeña un papel fundamental en la   distribución, producción y consumo de la energía eléctrica ya que es el método más usado en todo el mundo para transferirla y fueron creados por Galileo Ferraris, Mikhail Dolivo-Dobrovolsky, Jonas Wenström, John Hopkinson y Nikola Tesla al final de la década de 1880.

Estos están integrado por una corriente alterna que posee tres fases monofásicas distintas, que poseen amplitud y potencias iguales, además de tener un desfasaje entre si de 120° eléctricos entre los polos de cada una de las fases del sistema.

Figura N° 1. Desfasaje entre fases en un sistema trifásico balanceado.

Este tipo de sistema divide la potencia total generada entre las tres fases y sus voltajes generalmente lo podemos encontrar desde los 208, 380 a 400 voltios u otra tensión eléctrica y dependerá de la maquina y configuración atendiendo las normas del país y las necesidades en cuestión.

Cabe destacar que los sistemas trifásicos deberían estar constituidos por 6 conductores eléctricos (2 por cada circuito), pero resulta que 3 de estos pueden unirse tal como se puede apreciar en la figura 2 denominando este como NEUTRO y conducir por este la sumatoria vectorial de las corrientes de linea, ya que la suma de corrientes de 'retorno' (el cable que falta) de un sistema trifásico de ser equilibrado es cero. De esa manera solo es necesario conducir los otros tres cables calificados como líneas.

Si se quiere utilizar un circuito monofásico alterno, solo es necesario tomar del sistema una línea y la tierra ese cable que falta como se indica en la imagen en la parte marcada con la letra “C” y se obtiene un voltaje 127 V; si en cambio se prefiere un mayor voltaje monofásico, es necesario tomar dos de las fases del sistema, como se puede ver en la imagen marcada con la letra “D”; y si se quieren utilizar simultáneamente los tres circuitos monofásicos, es decir el sistema trifásico se pueden unir de nuevo uno de los extremos de cada fase y llevarlo a tierra, y ya se podrá disponer del triple de potencia que utilizando un solo circuito monofásico alterno como se ve en las letras “F y G”. Para el caso de la conexión con letra “E“ se utiliza para cargas especificas que se necesita el cable tierra. 

Figura N° 2. Conexiones posibles con un sistema trifásico.

Sin duda alguna, esta innovación enriqueció la vida del ser humano al disponer de una flexibilidad para las conexiones y disposición de diferentes niveles de tensión con la corriente alterna y es que gracias a esto ciudades enteras han podido disfrutar de los servicios eléctricos, ya que son tanto utilizados en instalaciones industriales de media y baja tensión, particularmente para la alimentación de motores eléctricos y otras cargas de potencia mas elevada. Además con la  distribución monofásica esta se emplea cuando las cargas se refieren a televisión, sonido, iluminación y pequeños motores eléctricos, entre otras cargas (electrodomésticos).

Conexiones trifásicas. 

Existen dos configuraciones trifásicas básicas: estrella (Y) y delta (Δ). Conforme lo mostrado en la figura 3, una configuración delta requiere apenas tres hilos para la transmisión, pero estrella puede tener un cuarto hilo. El cuarto, en su caso, se suministra como neutro y normalmente es aterrado. Las designaciones de tres y cuatro hilos no cuentan el hilo de tierra presente por encima de muchas líneas de transmisión, que es exclusivamente para protección de falla y no transporta corriente de uso normal.

Figura N° 3. Conexiones trifásicas.


·         Estrella: Para realizar este tipo de conexión se unen los extremos finales de los devanados de la carga o generador (U2, V2, W2) en un punto central, en caso de tener solo un devanado por fase. Esta forma de conexión tiene el aspecto de una estrella.

·         Triángulo o Delta: Para realizar este tipo de conexión se unen los principios y finales de las fases de los devanados, (W2-U1, U2-V1, V2-W1), dando lugar a una forma que tiene el aspecto de un triángulo.

Uso de las conexiones.

El sistema estrella de cuatro hilos tal como se explico anteriormente es usado cuando una mezcla de cargas monofásicas y trifásicas deben ser servidas, como iluminación mezclas de cargas del motor. 

Como ejemplo de aplicación esta la distribución local en Europa (y otros lugares), donde cada cliente puede ser alimentado apenas por una fase y el neutro (Es el común de las tres fases). Cuando un grupo de clientes que comparta el neutro consume corrientes de fase desiguales, el hilo neutro carga las corrientes resultantes de esos desequilibrios. 

Los ingenieros electricistas intentan proyectar el sistema de energía trifásico para que en  cualquier ubicación la energía tomada de cada una de las tres fases sea la misma tanto como sea posible para las cargas. Así como también intentan organizar la red de distribución de modo que las cargas sean lo más equilibradas como sea posible, una vez que los mismos principios aplicados a las  instalaciones individuales también se aplican al sistema de distribución de energía a gran escala. 

Con base en la conexión estrella (Y) y delta (Δ). Generalmente, existen cuatro tipos de conexiones para el fin de transmisión y distribución.

·         Estrella (Y) - estrella (Y) es usado para baja y alta tensión.

·         Delta (Δ) - Delta (Δ) es usado para grandes y bajas tensiones.

·    Delta (Δ) - estrella (Y) es usado para transformadores elevadores, o sea, en estaciones generadoras.

·     Estrella (Y) - Delta (Δ) es usado para transformadores reductores, o sea, la final de la transmisión.

    Ventajas de los sistemas trifásicos.

En comparación con una fuente de alimentación CA monofásica que usa dos conductores (fase y neutro), una fuente trifásica sin neutro y la misma tensión de fase-tierra y la capacidad de corriente por fase esta puede transmitir tres veces mas energía usando apenas 1,5 veces mas hilos (o sea, tres en vez de dos). Así, la relación entre la capacidad y el material conductor es duplicada. La relación  entre la capacidad y el material conductor aumenta para 3: 1 con un sistema trifásico no aterrado y un sistema monofásico con aterramiento central (o 2,25: 1 si ambos emplean la misma medida de los conductores).

Es decir este tipo de instalación es generalmente más económico que un circuito monofásico de dos hilos equivalentes a la misma línea para la tensión de aterramiento porque usa menos material conductor para transmitir una determinada cantidad de energía eléctrica.

La mayoría de las cargas residenciales son monofásicas y los circuitos residenciales en  América del Norte, la energía trifásica puede alimentar bloques de apartamentos, sin embargo cada carga residencial es conectada como monofásica.

Para las áreas de baja densidad de carga, se puede distribuir con única fase.

Con el empleo de los sistemas trifásicos, los motores 3ф pueden operar sin utilizar devanado o capacitores auxiliares. Esto es algo que no ocurre con los motores monofásicos, ya que estos motores forzosamente necesitan devanado y capacitores auxiliares para poder funcionar.

Con el sistema trifásico se produce un alto rendimiento de los receptores, específicamente motores, los cuales son alimentados con potencia constante por la línea trifásica.

            Características de las conexiones trifásicas. 


  Donde: VL es Voltaje de Linea.

    Vf es Voltaje de fase.

                IL es Intensidad de línea

                If Intensidad de fase.


            Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma, consúltalos y sigue mi  blog.

Si tienes alguna duda contáctenos vía Correo electrónico.

Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Referencias:  

https://industriasgsl.com/blogs/automatizacion/fuente-trifasica

https://altatecnologia.com.mx/la-importancia-de-los-transformadores-para-la-industria-electrica/

http://energia.renovetec.com/117-por-qu%C3%A9-se-distribuye-corriente-

https://stringfixer.com/pt/Phase_sequence

http://universolambda.com.br/fundamentos-de-sistemas-trifasicos/

https://www.desterroeletricidade.com.br/blog/eletrica/1660/

https://siemetrafo.com.br/diferencas-entre-sistema-trifasico-bifasico-e-monofasico/


Prueba de Polaridad a los transformadores eléctricos.

 Saludos.

Espero se encuentren muy bien estimados lectores, A continuación les comparto el más reciente escrito en Tecnología Eléctrica.

Si eres un lector habitual de este blog y te gusta su contenido quizás quieras y puedas contribuir para su mantenimiento.  No olvides marcar el botón (SEGUIR) en el Blog Gracias…

-----------------------------------------------------------------------------

Prueba de Polaridad a los transformadores eléctricos.

Los transformadores eléctricos son aquellas maquinas estáticas que tienen la capacidad de  cambiar nivel de voltaje a otro, minimizando las pérdidas de transmisión o distribución. Durante su funcionamiento los transformadores eléctricos están expuestos a intenso estrés de diversas fuentes a lo largo de su larga vida útil. Esto daña el aislamiento eléctrico, que es muy importante para el funcionamiento seguro y confiable del transformador. Una serie de métodos de diagnóstico dieléctrico constituyen una contribución crucial a la garantía de la calidad y al mantenimiento de la seguridad y la confiabilidad del funcionamiento de los transformadores de potencia, ya que aportan pruebas sobre los cambios del estado del aislamiento.

Por lo tanto, las empresas distribuidoras de energía eléctricas deben realizar periódicamente un conjunto de pruebas, con el fin de evaluar su condición, programar trabajos de mantenimiento y planificar su sustitución.

Pruebas de puesta en servicio

Estas son la base para verificar y apoyar los criterios de aceptación de los equipos o para analizar los efectos cuando sucedan cambios o variaciones con respecto a los valores iniciales de puesta en servicio. Se consideran pruebas eléctricas, aquellas que determinan las condiciones en que se encuentra el equipo eléctrico, para determinar su operatividad.

Polaridad de un transformador eléctrico

Muchas personas no tienen conocimiento de la existencia de la polaridad de un transformador eléctrico. Entender este funcionamiento interno de los transformadores a veces puede ser un poco complicado cuando no se trabaja de forma muy directa con este tipo de equipo, además en cada tipo de transformador la funcionalidad puede variar, pero si algo que tienen todos los transformadores en común son las polaridades (aditiva y sustractiva)

Desde el punto de alto voltaje en el devanado del transformador hasta el de bajo voltaje del mismo y debido a la diferencia de potencial que existe entre ellos. En este punto es donde la polaridad eléctrica entra en escena.

Figura N° 1: Imagen referencial de un Tx´s


La polaridad eléctrica simplemente describe la dirección del flujo de corriente. Cuando miramos en el sistema de CC, encontramos que un polo es siempre positivo y el otro es siempre negativo, lo que implica que la corriente fluye en una sola dirección. Pero cuando miramos en un sistema de CA, los terminales cambian su polaridad periódicamente, y la dirección de la corriente también cambia en consecuencia.

Figura N° 2: Dirección Instantáneas de corrientes según polaridad.


Las bobinas secundarias de los transformadores monofásicos se arrollan ya sea en el mismo sentido de la bobina primaria o en el sentido opuesto según el criterio del fabricante. Debido a esta situación, podría ser que la intensidad de corriente eléctrica en la bobina primaria y la intensidad de corriente en la bobina secundaria circulen en un mismo sentido, o en sentido opuesto, por ello la polaridad de un transformador dependerá siempre de cómo están enrolladas las dos bobinas, no solo con respecto a su núcleo sino también entre ellas.

Polaridad Aditiva

La polaridad aditiva se da cuando en un transformador el bobinado secundario está arrollado en el mismo sentido que el bobinado primario. Esto hace que los flujos de los dos bobinados giren en el mismo sentido y se sumen. Los terminales “H1” y “X2” están en línea. Ver el siguiente diagrama.

Polaridad Sustractiva

La polaridad sustractiva se da cuando en un transformador el bobinado secundario está arrollado en sentido opuesto al bobinado primario. Esto hace que los flujos de los dos bobinados giren en sentidos opuestos y se resten. Los terminales “H1” y “X1” están en línea. 

“La polaridad indica los polos positivos o negativos de los terminales del transformador en un determinado instante”

Para un transformador bien sea monofásico o trifásico las puntas del lado de alta se marcan con las letras H, y en el lado de de baja tensión se marcan con la letra X.

La marcación de los números dependerá si es salida de o entrada del devanado. Las entradas se marcan no números impares y la salida con números pares, esto para el caso de Tx´s monofásicos, Para Tx´s trifásicos H1, H2 y H3 para el lado de alta y en baja X1, X2 y X3.

Como se indico anteriormente existen dos tipos de polaridades que puede tener el transformador: polaridad aditiva y sustractiva. Por ejemplo, las normas en América del Norte identifican los terminales de alto voltaje con H1 Y H2 Y los de bajo voltaje con X 1 Y X2. De este modo, en el instante que H1 es positivo, X1 también lo será, quedando para la polaridad aditiva H1 y X1 marcan de forma diagonal entre primario y secundario. En la sustractiva H1 y X1 se marcan de forma adyacente.  De allí se puede ver como ejemplo la sustractiva a continuación:

Figura N° 3: Polaridad de un Tx´s de 4 devanados monofásico.


También se pueden  emplear otros tipos de marcaciones para identificar la polaridad de los transformadores. Sus terminales pueden resultar identificados con puntos, cruces, números u otro tipo de símbolo apropiado. En la representación esquemática de los arrollamientos de un transformador de la Figura 4 se emplearon puntos.

                    Figura N° 4: Marcación de Polaridad de los devanados en un Tx´s


Note: que un terminal no ser con respecto a sí mismo y que sólo ser con a otro terminal. Por lo en un instante los terminales 1, 3, 6, 7 Y 10 son todos a los terminales 2, 4, 5, 8 Y 9.

 ¿Cómo determinar la polaridad?

Existen diversos métodos para determinar la polaridad de un transformador. Cada uno de ellos tiene su procedimiento de aplicación, así como instrumentos y equipos a utilizar.

Métodos de ensayo:

·         Método de golpe inductivo con corriente continúa.

·         Método de la corriente alterna.

·         Método del  transformador padrón.

·         Método del golpe inductivo con corriente continúa.

Para determinar la polaridad nos concentraremos solo en uno de los métodos el de corriente alterna en este se coloca un puente (se hace un corto circuito) entre los terminales del lado izquierdo del transformador y se coloca un voltímetro para medir voltaje alterno entre los terminales del lado derecho del mismo.

En el caso de que la lectura del voltímetro sea mayor que Vx el transformador resultará ser de polaridad aditiva y si la lectura es menor a Vx, el transformador será de polaridad aditiva.

Para entenderlo mejor, veamos una imagen donde se observan las dos posibles soluciones.

Figura N° 5: Posibles lecturas del V para la polaridad de un Tx´s.


Para la polaridad aditiva, el voltaje (Vc) entre el lado primario (Va) y el lado secundario (Vb) será la suma de ambos voltajes, el alto y el bajo, es decir, obtendremos Vc = Va + Vb, Así mismos para la polaridad sustractiva, el voltaje (Vc) entre el lado primario (Va) y el lado secundario (Vb) será la diferencia entre el alto y el bajo voltaje, es decir, tendremos Vc = Va – Vb

Figura N° 6: Procedimiento de medición para la prueba de polaridad.


Cabe destacar que esto se debe a que en el primer caso los campos magnéticos de las bobinas tienen el mismo sentido, se sumaron y se creó un voltaje inducido más grande que Vx. En el caso contrario, los campos se restaron y creó un voltaje inducido menor a Vx.

A modo de cierre:

Al realizar esta exposición e investigamos las diversas operaciones de los transformadores eléctricos, encontramos que estos necesitan trabajar todo el tiempo y por ende abastezcan la alta demanda en los momentos pico de los consumidores. Así que, para hacer frente a estas situaciones, se necesita saber cómo conectarlos para poder suplir la carga. Para esto los  transformadores en paralelo es una opción y para esto entonces es necesario saber conectarlos entre ellos.

El paralelismo se hace conectando los mismos terminales de polaridad del bobinado primario. Un procedimiento similar se hace para el devanado secundario. El paralelismo aumentará la capacidad de suministro de energía y también la fiabilidad del sistema.

Es por ello que se necesita realizar la prueba de polaridad en paralelo transformadores para asegurarnos de que conectamos las mismas bobinas de polaridad y no las opuestas. Si accidentalmente conectamos las polaridades opuestas de las bobinas, se producirá un cortocircuito y eventualmente se dañará la máquina.

Figura N° 7: Mala conexión realizada entre 2 Tx´s.


Sabiendo esto, ya podremos interpretar correctamente mejor los resultados del tipo de polaridad de un transformador, además que conocer esto nos da que la importancia de marcar la polaridad en ellos y así conectar correctamente los transformadores en paralelo.

Dos reglas son importantes para evitar  cortos circuitos, que pueden hacer explotar a estos  transformadores.

1ª.- Ambos transformadores deben tener valores de voltajes idénticos en sus bobinados primarios, esta característica de  valores voltajes iguales también se debe cumplir en los bobinados secundarios, estos deben alimentar a las cargas con la misma tensión.

2ª.- los 2 transformadores deben tener  polaridad idéntica, ser los dos sustractivos o los dos ser aditivos.

Esperamos que esta información les sirva de forma práctica para entender un poco más cómo funcionan los transformadores de polaridad aditiva o sustractiva. Una vez que se logra comprender el funcionamiento interno de estos equipos es mucho más fácil identificar cuál es el que cubre sus necesidades.

Ayúdanos a crecer

Por último, si estas decido aprender en los conocimientos de tu carrera profesional, es probable que los enlaces te ayuden con información sobre diversos temas de la misma. Pronto micro-cursos.

Si tienes alguna duda contáctenos vía Correo electrónico.

Hasta la próxima. ¡COMENTA Y COMPARTE!  Estaré atento a tus consultas y comentarios.

Referencias Electrónicas:

https://unicrom.com/polaridad-de-un-transformador-electrico/

https://www.faradayos.info/2015/01/polaridad-transformadores-aditiva-sustractiva-determinacion.html?m=1

https://www.electronicafacil.top/transformador/testeo-transformador/prueba-de-polaridad-del-transformador-explicacion-diagramas/

https://www.transformadores.cl/blog/transformadores-polaridad-aditiva-y-sustractiva/#:~:text=Para%20determinar%20la%20polaridad%20del,valor%20de%20voltaje%20(Vx).

https://coparoman.blogspot.com/2018/03/prueba-de-polaridad-transformadores.html


Generalidades en la Coordinación de Aislamiento.

 Saludos.

Espero se encuentren muy bien estimados lectores, A continuación les comparto el más reciente escrito en Tecnología Eléctrica.

Si eres un lector habitual de este blog y te gusta su contenido quizás quieras y puedas contribuir para su mantenimiento.  No olvides marcar el botón (SEGUIR) en el Blog Gracias…

-----------------------------------------------------------------------------


Generalidades en la Coordinación de Aislamiento.

Caso: Redes de Distribución Eléctrica.

Mantener índices de confiabilidad óptimos en las redes eléctricas de distribución es una ardua labor y su complejidad incrementa si las mismas se encuentran ubicadas en lugares poco favorables para su normal desempeño, esto debido a que deben proveer calidad y seguridad en el suministro de energía a los consumidores de la forma más eficiente posible.

Las sobretensiones tienen una gran influencia en el funcionamiento de las redes de distribución.  Al momento se han establecido múltiples estándares y guías para la protección de las líneas de distribución eléctricas en media tensión ante este fenómeno.

 Las sobretensiones no son más que un aumento del voltaje en los sistemas de energía eléctrica con valores superiores al voltaje de referencia, que es el máximo voltaje nominal de operación del sistema.

Ante estas sobretensiones se pueden presentar interrupciones de servicio en la red eléctrica y pueden ser provocadas por sobretensiones de origen interna o externa. Estas se tornan fundamentales estudiarlas tanto como los fenómenos atmosféricos (Externa), así como las sobretensiones de maniobra, armónicos o  frecuencia industrial (Internas) con la finalidad de encontrar el punto óptimo de la coordinación de aislamiento.


Figura 1.- Sobretensiones en una onda AC. [1]

La coordinación del aislamiento es el proceso, a partir del cual es  posible seleccionar la rigidez dieléctrica de los equipos en función de las solicitaciones esperadas durante su tiempo de vida útil. Sin lugar a dudas, un cuidadoso estudio influye fuertemente en disminuir el valor de la energía no suministrada.

 Factores para la coordinación de aislamiento en las redes de Distribución eléctrica:

Para el proceso a realizar para la coordinación del aislamiento se deben considerar diversos factores, Entre estos:

        Definición del desempeño admisible.

        Caracterización de las sobretensiones y de las solicitudes ambientales

        Selección de los niveles de aislamiento

        Aplicación de medidas de protección contra sobretensiones.

        Verificación de las características del aislamiento.

        Evaluación del desempeño.

El aislamiento de un determinado equipo en una red eléctrica está sujeto a diversas solicitudes dieléctricas y ambientales, clasificándolas de acuerdo con su duración temporal:

Tensión de régimen permanente a frecuencia industrial: En la  red, la tensión puede sufrir variaciones que pueden rondar hasta el 10% en relación a la tensión nominal del sistema. Para efectos de coordinación de aislamiento, la red eléctrica será caracterizada por su tensión más elevada.

Una sobretensión de esta amplitud es soportada por el aislamiento, sin embrago en lugares donde las condiciones ambientales son adversas, el aislamiento podrá estar en peligro, por ejemplo con la acumulación de  contaminación salina en los aisladores.

Sobretensión temporal: Desde el punto de vista temporal, estas se definen con un inicio en los 20 ms, pudiendo extenderse hasta una hora, teniendo la frecuencia igual a la frecuencia industrial. Estas son originadas debido al cierre o apertura de equipos de maniobra u ocurrencia de defectos en  la red eléctrica.

La amplitud de la sobretensión es determinada a través de la filosofía de conexión del neutro a tierra o la existencia de condiciones resonantes.

De modo que al mitigarse las sobretensiones temporales, se pueden  adoptar medidas en sentido de parametrizar las restricciones operacionales.

Sobretensiones transitorias de frente lenta: Los tiempos de subida de estas sobretensiones se encuentran entre los 20 y los 5000 μs, teniendo estos valores resultantes como transitorios reglamentados en las diferentes normas para las maniobras de conexión.


Figura 2.- Formas de ondas estandarizadas para sobretensiones tipo maniobra y rayo [2]

La sobretensión transitoria de frente lento también podrá ser inducida por una descarga atmosférica cuando la esta ocurre en una línea aérea cercana a ella.


Figura 3.- Impacto de una descarga atmosférica sobre una fase.

La inclusión de descargadores de sobretensión y/o otros dispositivos, permitirán la diminución de transitorios de conexión.

Sobretensiones transitorias de frente rápido: Desde el punto de vista temporal, estas sobretensiones son muy rápidas variando entre los 0,1 e 20μs. Estas sobretensiones tienen origen en descargas atmosféricas, pudiendo ser amenizadas a través del control de blindaje, descargadores de sobretensiones y con conexiones a tierra eficaces.

En un sistema de distribución, lo que determina los niveles de aislamiento es esencialmente el comportamiento de la red a una descarga atmosférica.

Las descargas atmosféricas afectan las redes eléctricas de distribución de dos formas: descarga directa a línea aérea o a los elementos de la línea; o sobretensiones inducidas cuando una descarga atmosférica ocurre en una línea cercana a la línea.


Figura 4.- Impacto de una descarga atmosférica sobre el cable de guarda.

Las líneas aéreas de distribución, tienen niveles de aislamiento elevados de tal forma que, cuando la red este expuesta a sobretensiones transitorias de maniobra, estas no constituyan ningún riesgo para el aislamiento de la red.

Los niveles de aislamiento serán seleccionados de acuerdo con el nivel de importancia de la instalación en la red de distribución [3].


Añadir título

Figura 5.- Valores característicos de las diferentes sobretensiones en un sistema eléctrico [4].

Estudio de la Coordinación del Aislamiento

En la realización de estudios de coordinación de aislamiento, es fundamental definir las solicitaciones dieléctricas, el nivel de aislamiento y los niveles de protección de los dispositivos de control de sobretensiones, los cuales se definen del siguiente modo:

• La definición del nivel de aislamiento, tal como es indicada en la norma CEI 60071-1, se habla de los términos de las tensiones soportables tanto para descargas atmosféricas y la de frecuencia industrial.

• En la mayor parte de los análisis, la sobretensión se obtiene utilizando el valor más alto calculado, a través de una simulación digital.

A partir de la tensión máxima de descarga obtenida para la onda de corriente 8/20 μs, con una amplitud de 10 kA, se determina el nivel de protección de los descargadores de sobretensiones,

• Para el aislamiento de los transformadores MT/BT se considera un margen de seguridad del 15%; para los transformadores AT/MT se debe tener un margen de seguridad del 20%. De esta manera, se considera que un transformador funciona mal cuando:

Vcw ≥ Vrw/Kp    (Ecuación 1)

Donde:

Kp = 1,15 e 1,20 respectivamente para los transformadores MT/BT y AT/MT;

Vcw – Tensión soportable de coordinación.

Vrw – Tensión soportable especificada por el equipo [3].

Procedimiento para determinar la coordinación del aislamiento.  

Figura 6.- Procedimiento general de la coordinación de aislamiento eléctrico [5].

Niveles de aislamiento normalizados en la red de distribución

Los niveles aislamiento para equipos colocados en subestaciones y transformadores para postes de distribución, están especificados en la tabla 1 de acuerdo con la CEI. Los niveles de aislamiento especificado para las líneas aéreas de AT y MT, constan en la tabla 2 En las líneas de 10, 15 y 30kV se implementa un nivel de aislamiento (250kV) que tiene por objetivo, según la compañía distribuidora de distribución, reducir fuertemente los disparos de las líneas por sobretensiones originadas por descargas atmosféricas. [6] [3]

Tabla 1.- Niveles de aislamientos normalizados para equipos de la EDP Distribución.

Tensión Nominal (KV)

Tensión más elevada

para el  equipo (KV)

Tensión soportable a frecuencia industrial,

húmedo (KV)

Tensión soportable a descarga atmosférica, seco (kV)

60

72,5

140

325

30

36

70

170

15

17,5

38

95

10

12

28

75

 

Tabla 2.- Niveles de aislamientos normalizados para líneas aéreas de la EDP Distribución.

Tensión Nominal (KV)

Tensión más elevada

para el  equipo (KV)

Tensión soportable a frecuencia industrial,

húmedo (KV)

Tensión soportable a descarga atmosférica, seco (kV)

60

72,5

140

325

30

36

70

250

15

17,5

38

250

10

12

28

250

 

Tabla 3.- Niveles de soporte para transformador de distribución. [7]

Tensión Nominal (KV)

BIL (KV)

Bajo frecuencia (KV rms)

1 min seco

10 seg. húmedo

14,4

95

35

30

14,4

110

50

45

24,9

150

60

50

34,5

150

70

60

46

250

105

95

 

Debe tenerse en cuenta que el equipo de conmutación (IAT, IAR, etc.) no puede adoptar un nivel de aislamiento para descargas atmosféricas de 250 kV. El equipo debe estar protegido contra sobretensiones por medio de pararrayos [6] [3].

A su vez, se presentan las distancias mínimas de aislamiento y las líneas de escape especificadas según IEC.

Referencias:

[1]  FULCHIRON D, Sobre voltajes y coordinación de aislamiento en Medio Voltaje Cuaderno Técnico  Nº 151 Shneider Electric febrero 1995. 

[2]  Temas de ingeniería Eléctrica, Editorial Félix Varela, La Habana, 2004. Dr.C Juan L. Almirall.

[3] DRE-C10-001/N (2008). “Instalaciones Eléctricas”, Guía de coordinación de  aislamiento, Reglas de ejecución y montaje, EDP, 2008.

[4]  RAMIREZ VAQUEZ, José, Protección de sistemas eléctricos contra sobre intensidades, 1997.

[5] IEC 60071-1. Insulation Co-ordination Part 1: Definitions, principies and rules. Ginebra. International Electrotechnical Comission, 1993. CEI/IEC 71-1: 1993.

[6]  A. C. MACHADO E MOURA, “TAT Texto General”, (Apuntes Técnicos) de Alta tensión, 2008.

[7]  MANUEL COOPER, Cooper  Power  System, Protección Eléctrica en Sistemas de Distribución, sección B, protección de sobrevoltajes, 2003.

Paginas Consultadas:

http://www2.aneel.gov.br/arquivos/pdf/modulo8_revisao_1_retificacao_1.pdf.

http://www3.fi.mdp.edu.ar/clagtee/2017/articles/02-019.pdf

https://ie2mmo.wordpress.com/2017/10/06/t08-descargadores-de-sobretension-2/

                                                                                                             


Cálculos del Sistema eléctrico (Caso: Laboratorio de Alta Tensión)

  Saludos. Espero se encuentren muy bien estimados lectores, A continuación les comparto el más reciente escrito en Tecnología Eléctrica, ...